Int. J Selids Structures Vol. 28, No. 2 pp. 249-263. {991 00Z0-TeRI 91 $300+ N
Printed 10 Great Britan, « 191 Pergumon Press pic

A GENERAL SOLUTION TO THE ANTIPLANE
PROBLEM OF AN ARBITRARILY LOCATED
ELLIPTICAL HOLE NEAR THE TIP OF A MAIN
CRACK

S. X. GonGg and S. A, MeGuip
Department of Mechanical Engineering, University of Toronto, 5 King's College Road.
Toroato, Ontario. Canada M3S {A4

(Received 2 April 1990 in revised form T November 1990)

Abstract —A general solution is obtained to the problem of the interaction between a main crack
and an arbitrarily located and oriented elliptical hole near its tip under mode H loading conditions,
The analysis is bused on the complex potentials for the antiplane problem and the superposition
principle. The stress intensity factor at the main crack is obtatned in a general series form and
approximate closed-form solutions are alse derived using a perturbation procedure. The present
solution is shown to coincide with Taylor expansion of exact solutions for collinear elliptical holes
with specific aspect ratios. Numerical examples are provided to show the effect of the geometry,
location and orentation of the microdetect on the stress inteasity factor of the main crack. The
present work should provide a valuable insight into mam crack microdeloct interaction phenomena
in brittle muaterials,

[ INTRODUCTION

Unlike ductile materials where crack propagation is accompanied by crack-tip plasticity,
the onset of a main crack extension in brittle materials is mainly governed by microcrack
formation in a zone ahead of the crack-tip; see, e.g., Hoagland er al. (1973), Claussen et
al. (1977), Evans and Faber (1984) and Riihle er al. (1987). This near-tip microcracking
has been regarded as being one of the principle mechanisms which influences main ¢crack
growth in brittle materials.

Two approaches are generally adopted in the development of analytical models to
predict the behaviour of a main crack in the presence of a microcracking zone. These are:
(1) the continuum damage mechanics model and (i) the discrete main crack-microcrack
interaction model. In the continuum damage model, the microcrucking region is described
by a different constitutive equation, with a reduced effective modulus, from that cor-
responding to the parent material. This reduction in modulus has two counteracting effects.
On one hand, it contributes to the reduction in the near-tip stresses thus leading to a
shiclding cffect. On the other hand, it enables the main crack to grow more readily, thus
feading to a reduction in resistance to fracture. The resulting enhancement or degradation
of the toughness of the material would ultimately depend upon the net outcome of the
above two cffects. Examples of the continuum mechanics models include the work of Evans
and Fu (1985), Ortiz (1987, 1988), Charalambides and McMecking (1987) and Hutchinson
{1987).

The discrete main crack-microcruck interaction model relies on the development of
approximate solutions to multiple microcracks in the vicinity of a main crack ; sce, e.g.. the
work of Hoagland and Embury (1980), Chudnovsky and Kachanov (1983). Chudnovsky
et al. (1987), Rosc (1986) and Rubinstein (1986). Recently, Gong and Horit (1989) have
derived a general solution to the interaction model for combined mode [ and 11 loadings
and discussed the accuracy of some of the previous solutions. With the aid of the leading
order explicit solution, Gong and Horii (1989) were able to identify the specific regions of
shiclding and amplification associated with mode [ loading. Their work was subsequently
extended by Mceguid e af. (1990) to provide all possible regions as well as contour levels
of shiclding and amplification with independent and coupled mode | and mode I loadings.
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A limited number of articles has dealt with the corresponding mode I problem for
very simplificd contigurations, for which it was possible to obtain closed-form exact solu-
tions. Smith (1983) derived an exact solution for the stress intensity factor of the main
crack in the presence of a collinear circular hole, while Turska-Kiebek and Sokolowski
(1984) obtained the solutions for collinear and vertical microcracks ahead of the main
crack. More recently. Chiang (1986) hus considered u slightly more general case of a
collinear elliptical hole.

The purpose of the present study is to provide a general solution to the antiplane
problem of the interaction between a semi-infinite main crack and an arbitrarily locited
and oriented elliptical hole. The analysis s based on the superposition principle and the
appropriate complex potentials for the antiplune problem. The solution to the problem is
obtained by superimposing three subproblems. each of which contains either the main crack
or the elliptical hole. In the present formulation, the stress-free condition of the main crack
is automatically satisfied. while the free elliptical hole condition due to Isida (1973) enabled
the development of the relevant consistency equations leading to the determination of the
unknown coctlicients in the corresponding complex potentials.

The general plan of the article is as follows. Section 2 provides some of the basic
cquations which are fundamental to the current formulation, while the detaited derivations
of the current antiplane problem are given in Section 3. In Section 4, the present solutions
are verified by comparison with cexisting exact solutions. Numerical examples are provided
to show the effect of geometry, tocation and orientation of microdefeet upon the stress
intensity tactor at the main crack. K\ Shielding and amplification effects resulting from
the presence of the microdefect are also examined,

20BASIC BQUATIONS IN ANTIPLANE ELASTICITY

The situation envisaged initially is that ol a main crack existing within an infinite sohid
deforming under mode HI loading conditions, as depicted in Fig. 1. In considering the
antiplane elasticity problem, the non-vanishing stress and displacement components can be
expressed in terms of one complex potentiad, &
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Fig. |. Schematic representation of o crack under mode HE loading.
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c=x+iv oand i=(/—1, (1

where .. and t,. arc the shear stresses, w is the displacement along the z-axis and G is the
shear modulus. The overbar represents the complex conjugate and prime denotes the
derivative with respect to the argument. The subscript - denotes the z-axis which should be
distinguished from the complex variable - = x+iy. If the xy coordinate system is now
rotated about the z-axis through an angle ¢ to form new coordinate axes m and n, then the
corresponding transformation equation for the respective stresses t,,. and t,. is:

Tp: — Ty = t:”h(r‘: - rr:) = enl'(D'(:). (2)

Now, consider the case of a single crack in an infinite solid lying on the interval (—a. @)
of the v-axis with the prescribed stress t,. = ¢(v) acting on the crack surfaces. The complex
potential corresponding to the above loading is

1 g /.7.2 _ 2 v
O = — - J VT " ‘r)d.\‘. (3)
‘4(’ [

XN—2

which simplifies to

b vglx
B () = ~ j \/.w(_\) dx, (4)
n/=d o Xx==

for a semi-infinite crack lying on the interval (— a0, 0).

Next, consider the case of a free elliptical hole having its centre at the origin and the
major and minor diameters (2a, 2h) along the x- and r-axes, respectively. Using the tech-
nique of conformal transformation and the method of Laurent series expansion (Isida,
1973), the general form of the complex potential for the tree elliptical hole can be written
as

D) = Y ((F,+iFCEd) "+ (M, +iMA Y], (5)

o=

where dots and asterisks denote real and imaginary parts, respectively, and d is some
reference length. The coctlicients of negative powers of eqn (5) can be expressed in terms
of those of positive powers as
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In eqn (7). a smaller value of the summation upper limit (r or p) is implied.

3 MATHEMATICAL FORMULATION

Consider now the present probiem of an infinitely extended solid containing a semi-
infinite main crack and an arbitrarily located and oriented elliptical hole near s tip, as
shown in Frg, 2. The undisturbed stress fickd in the absence of the cliiptical hole is given by
the singular clastic ficld corresponding to the applicd stress intensity factor, Kyy,. The origins
of two rectangular coordinate systems vy r, and 1y are taken at the tip of the main crack
and the centre of the clliptical hole with its major and minor dumeters (2a, 20) oriented
along the x- and y-uses, The distunce between the tip of the main crack and the centre of
the elliptical hole is denoted by d, the angle measured from x-axis to the line connecting
the tip of the main crack and the centre of the elliptical hole by 8, and the orientation angle
of the clliptical hole by ¢.

Now, the total complex potential € for the problem is considered as being the sun of
three functions ; namely

O =D +0,+b,, 9

which correspond to three separate subprobloms, as illustrated in Fig, 3,

In subproblem 1. the main crack is subjected to the applied stress intensity factor Ry,
The stress field near the tip of the main crack is given by the singular near-tip stress field.
The corrgsponding stress function ¢, for subproblem 1 is given by

Fig. 2. Arhitranily focated and oriented elliptical hole aear the tip of o muain crack.
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Fig. 3. The superposition principle utilizing three subproblems. (1) The original problem.
(b) Subproblem 1. (¢) Subproblem 2. (d) Subproblem 3.

K
P (zy) : “l

VAnzy

co=Xo+ive and i=—1, (10)

where prime denotes derivative with respect to the corresponding argument, z,,.

Subproblem 2 considers the case of an infinite solid containing a single elliptical hole
described by the following stress function @, which has singularitics within the hole (Isida,
1973).

®y(z) = 3 Fulsfd) D (I
n=0
with - = x+/r and the unknown cocfficicnts (F, = F, +iF}) to be determined. From (2)

and (11). the stress along the position of the main crack ts obtained as
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i
T, (Xo) = S e 7@ (2) = DY(D)]. (12)

with - = (xg—3)e”and & = de”

In subproblem 3. the main cruack is loaded by the traction —t, _ (v,). From (4). the
stress function for subproblem 2 is given by

1" Xt tv)
(D‘x(:n): j N " dv,. (13

n\v'_-” Yo Zu

The stress intensity factor for the main crack is obtained from
. 2 e I.l..:l.( =)
AA”; = - o d,\};. (‘4)
Vrla

! A% Xo

Substituting (12) into (13), d7(z,) can be obtained as

Ciza) = Y e DS, (0 ) = Fe TS,z D

»\,«'/:n "ot
{15
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Q& =" " p Y, (17)
e <
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Equations (11}, (12) and (14) yickd the following expression for the stress intensity factor
at the tip of the main crack :

p ?:'A
ARy = Z (—l)"(”*'“[’nu\/;'

n o0

x TE sin{in+ D —(n+ DO+ Freos[in+ Dp—(n+ D0}, (19)

It is now appropriate to consider the superposition of the three subproblems. The total
complex potential & satisfies the traction-free condition along the main crack. However,
the traction-free condition for the clliptical hole should be examined. Since the free-hole
condition (3) is given in terms of the local coordinates, it is necessary to express the total
complex potential @ as a function of =. The transformation relation between main crack
and microdefect coordinates is given by
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sy =ce%+ 2 (20)

Substituting (20) into (10) and (15). and combining with (1 1), the total complex potential
® is reduced to the same form as eqn (5). as follows :

OC) = Y (F+iFDEd) " "+ (M, +iM N ). @cn

n=10

where

M, =(W~l)‘ p"’\"'\/j ssin[(n+ Do —(n+ Hol+ Z (4, F,+d, F}).

p=0

1Ky [d
arr= )n+f’ "'J ccos[(n+ DG—(n+ DO+ T (bFotenFD. (2
p=0

The expressions for the coefficients a,,. b,,, ¢,, and d,, are provided in the Appendix.

Equations (22) and (6) constitute the necessary consistency equations for determining
the unknown cocflicients £, FX M, M*(n = 0.1.2,...). which are solved with the aid of
the following perturbation technique. Assume that all the unknown coeflicients can be
cxpressed as a power series in terms of («/d) such that

Fro= /d Z F™Majd)™.

q=ntl

l

I'..‘u Ft = /‘I Z [ ‘.;:I:- I(U/‘/) :‘r-

g=nvl

\/d Z M3 (afd)™. (23)

¢ =0

M,

Substituting (23) into (6) and (22) and cquating the coeflicients of the same powers on both
sides, the following recurrent formulae are obtained :
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SAS 28:2-1
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q -2
M =N [a,F 0 +d,,F .

p=0

¢ -2
1 2q "1 2q1 . .
M = Y (b Fy 4 Fo]

Pt

(g =234...) (24)

Using the above relations. the expansion coefficients in eqns (23) can be calculated to as
many terms as required.
The stress intensity factor for the main crack is thus given by

K = K+ AR (25)

where AKy, is obtained from (19) with F, and F?* determined from (23) and (24). It is
observed from (19) and (23) that AKXy, can be expressed in terms of even powers (a/d)™"
(N =1.2,3,..). Taking the dominant terms. N =1 and ¥ =2 in (25). the following
normalized closed-form expressions for the first and sccond order approximate solutions
are obtatned : namely

K iK = l'{”(::) Gl o) (N=1) (26)

M 4
KKy =1+ ("I) G, p.c)+ (‘;) HO.h.e) (N =2) 7
[4 {

where G0, ¢, ) and H{U, ¢, ) are derived explicitly as

GO, .y = Heos (2 =20)(1 =) +cos 0 {1 4+£)7)

and

R —_Yene f2h SYcos
(40 [(: £)00s Qb —=20) - (1+e)eost s

H(0, ) = 138 Lt eos
+(1—g)ycos 0cos (2 — )+ 31 —z)cos 2p— ) + 15(1 —£) cos (24 — 30)
o > N bl . () 4 " N
—15(1 =g )ysin (3p— Wysin| ¢ — 5 =3l —e)cos™ (2 —st))
=3 =&y sin(p = 20y sin Bp— 3N — (L =) sin (p— 30)

x sin ((1)— 2) cos (2¢p - 3())]. {28)

4. RESULTS AND DISCUSSION
This section is divided into two main parts. The first presents results with a view to
verifying the preceding analysis, while the second examines the effect of the pertinent
parameters upon the stress intensity factor at the main crack.
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Fig. 4. Special configurations of elliptical holes ahead of a main crack for which exact solutions
exist. () Collinear elliptical hole. (b) Collinear circular hole. (¢} Collinear microcrack. (d) Vertical
microcrack.

To enuble comparisons with existing exact solutions, the configurations shown in Fig,.
4 were considered. In the case of a collincar elliptical hole ahead of the main crack (Fig.
da), the closed-form solution derived by Chiang (1986)F can be written in a compact form,

using the present notation, as follows:

Kl J@(_Lﬂzz E(x) 29)
Ky h—1 K@)
with
I
k= l+h"
I .2 o
h= 4/.‘[(I +N)+4i(L+N) '],
| ,
G=-2N[(I+N)—4/. (t+N) '] (30)
and

V= 1 = (). o= pe

where K and E denote the complete elliptical integrals of the first and second kind. respec-
tively.

+ There arc two misprints in eqns (7) and (13) in Chiang (1986).
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Expanding (29) into Taylor series with respect to (a d). we obtain

(1 +¢)°

4
LR . 2 ‘3 3
138 (23— 18¢+ 3¢ )<d> +e (RIY]

M ge | . tll
Ko Ky =14+ ,(1+8) y +

Substituting # = 0 and ¢ = 0 into (27). it is confirmed that the present solution coincides
with (31). Additionally. the respective configurations of a collinear circular hole (¢ = 1)
and a collinear microcrack (& = 0). depicted in Fig. 4b and ¢. were also confirmed in a
similar manner.

Figure 4d shows a vertical microcrack ahead of the main crack. The closed-form exact
solution for this problem wus given by Turska-Kiebek and Sokolowski (1984) as

KW' ia 1427 E(n)

o= s Lo i)
Ky  (I+4)" K(x) (
where
2/ . a
K= , coand A= I
RV ¢
Expanding (32) into Taylor series with respect 10 4 = «/d leads to
3 fay
KK =1+ 33
ne /A t 128\ g + (33)

Shiclding

Fig. 5. Contour representation of normalized stress intensity factor K Ky as a function of
location uand orientation of a microcrack ;¢ = 0.
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Fig. 6. Contour representation of normalized stress intensity factor K Ky as a function of
tocation and orientation of an ellipticad hole; ¢ = /4.

Substituting ¢ =0, ¢ = r;2 and ¢ =0 into (27), it is again confirmed that the present
solution coincides with (33). It is worth noting that the above equation can also be directly
derived from eqn (31), with the appropriate substitutions,

Typical results of the stress intensity factor predicted by the present first and second
order solutions are compared with the exact solutions of eqn (29) for a collincar elliptical
hole in Table 1. The table shows that the presence of a collinear cut out, whether an elliptical
hole. a circular hole or a microcrack, introduces an increase in the stress intensity factor of
the main crack. Furthermore, it can be seen that the circular cut out (¢ = 1) provides the
largest increase in the normalized stress intensity factor (K'/Kyy). for a given (a/d).

Table I Normalized siress intensity factor (K317 K ) as @ function of location («'d) and aspect ratio (& = b/a)
af i collinear clliptical hole

Exact First order Sceond order
legn (29)) leqgn (20)] {eqn (27))
ad £ =10 e=17 e=1 £=0 £=172 e=1 £=0 e=172 £=1
0 1.000 1.000 [.000 1.000 1.000 1.000 1.000 1.000 1.000
0.1 1.003 1.004 1.005 1.003 1.004 1.005 1.003 1.004 1.005
0.2 1.010 1015 1.020 1.010 1015 1.020 1.010 1.015 1.020
0.3 1.024 1.036 1.047 1.022 1.034 1.045 1.024 1.036 1.046
0.4 1.046 1.068 1.087 1.040 1.060 {.080 1.045 1.067 1.086
0.8 1.077 1114 1. 144 1.063 1.094 1.125 1.074 I.110 1.141
06 1.123 1.182 1.225 1.090 113§ 1.180 IRER 1.169 1.212
0.7 1.195 1.292 1.343 1.123 1184 1.245 1.166 1.246 1.305
08 1.319 1.447 1.532 1.160 1.240 1.320 1.234 1.346 [.422

0.9 1.591 1.881 1921 1.203 1.304 1422 1.320 1.474 1.569
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Fig. 7. Contour representation ol normalized stress intensity factor AN'Ky, a5 a function of
tocation and orientation ol an clliptical hole; ¢ = 142,

Two further observations can be made from the table. The first is that provided a/d is
refatively small, the first and second order solutions generally underestimate the exact
solution by a very small amount, The second is that the accuracy of the proposed approxi-
mate solutions depends upon the relative position of the microdefect, «/d. For example, in
the case of a/d = 0.9, where the microdefect is very close to the crack-tip, the maximum
error resulting from the use of the second order solution is 21%. Nevertheless, if a/d < 0.5,
then the maximum error resulting from the use of the first order solution is within 2% of
exact solutions.

Consider now the case of an arbitrarily located and oriented elliptical hole near the tip
of a main crack. The present formulation predicts the dependence of the normalized stress
intensity factor (K'/Ky) upon the location (ajd.#), orientation (¢p) and aspect ratio
{z = hja) of the elliptical hole. For a given elliptical hole (a/d. 8, ¢ and ¢}, it is now possible
to compute the corresponding contour levels and the associated regions of shiclding
(K3 Ky < 1) and amplification (K{*/K,, > 1). For simplicity, the first order solution
[eqn (26)] was used in the analysis of a microdefect with a/d = 1/4. For this first order
solution, the regions of shiclding and amplification are independent of the ratio {(u/d).
Accordingly. setting G (0, ¢, &) of eqn (28) to zero is suflicient for determining the regions
of shielding and amplification associated with mode 111, as depicted in Figs 5-9 for different
geometries of the microdefect.

Figure S shows the contour levels of K{i"/Ky, and the associated regions of ampli-
fication and shiclding under mode HI loading for a microcrack (2 = 0). Depending upon
the orientation ¢ and location of the microcrack 0. the stress intensity factor at the main
crack may be increased or decreased as described by the four distinct regions of Fig. 5.

Figures 6-8 show the corresponding contour levels and regions of shielding and
amplification for an arbitrarily oriented and located elliptical hole (¢ = 1/4, 1/2 and 3/4).
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Fig. 8. Contour representation of normalized stress intensity factor KKy as a function of
location and orientation of an clliptical hole; & = 34,

while Fig. 9 shows the corresponding results for a circular hole (¢ = 1). In these cases, only
two regions of shiclding and amplification are now identified. These figures also indicate
that ampliftcation changes to shielding as 0 varies from 0 to z. Furthermore, the trajectories
of the normalized stress intensity tactor at the main crack are drastically influenced by the
geometry of the hole. In the case of the circular hole, the trajectorics become independent
of the “defect orientation™, ¢, as would be expected due to the symmetric nature of the
hole. This trend can also be observed for elliptical holes with relatively large aspect ratios.
as depicted in Fig. 8 for ¢ = 3/4.

5. CONCLUSIONS

In this article, a general solution to the interaction between a main crack and an
arbitrarily located and oriented elliptical hole under mode 11 loading was developed. The
analysis was based on the complex variable formulation and supported by the superposition
principle. In particular, the stress intensity factor of the main crack was obtained in general
asymptotic forms, and explicit analytical first and second order solutions were also provided.
The present solutions agree with Taylor expansions of exact solutions for the special cases
corresponding to a collinear elliptical hole with different aspect ratios.

The results of the work also reveal that depending upon the aspect ratio, location and
orientation of the clliptical hole, shiclding and amplification cffects may become prevalent.
In the case of shielding. this provides a remarkable toughening effect, while in the case of
amplification it provides an undcsirable weakening cffect. The work provides a uscful
quantitative design tool and a valuable insight into main crack-microdefect interaction
phenomena in brittle materials.
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Fig. 9. Contour representation of normalized stress intensity factor K5 Ry as a fuaction of
location and orientation ot a circular hole ;¢ = 1.
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APPENDIX

Substituting (20) into ([5), the stress potential @ can be written in terms of = as follows :

=N CFR +FET,Jzdr . (Al

a0 p=u

where R, and 7., are two complex functions detined by
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where ,(5) is given by (173, and = ¢,
Then the coellicients «,,. b, ¢, and d,, 10 eyn {22) are evaluated as

a,, =RelR, +1,)
b, =1m(R, +T,.)
Cp = RelR, =T,)
dy = —In(R,, —T,.) (AS)

where Re and Im denote the real and imaginary parts of a complex variable, respectively,



